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FOREWORD

A survey of the literature on the reduction of sulfur dioxide in nonaqueous

solvents was carried out as part of a program to investigate safety hazards 
in

nonaqueous ambient temperature lithium batteries. Comparison and discussion of

conclusions and contradictions presented have led to the experimental plans 
and

results in part II of this report.

This work was funded by the Independent Research Program of the Naval

Surface Weapons Center and by the Electrochemistry Technology Block Program of

NAVSEA.
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Chapter 1

INTRODUCT ION

Considerable interest in the electrochemical behavior of nonaqueous
solutions of sulfur dioxide has been generated by the use of these systems in
high energy density lithium batteries. During the past twenty years, SO2 in
solvents such as dimethylformamide (DNF) and dimethylsulfoxide (DMSO) has been
extensively studied. Only since 1978 have reports been appearing on actual
battery solvents, propylene carbonate (PC) and acetonitrile (AN).

The reduction of SO2 has been studied by a variety of techniques,
including ultraviolet (Uv) and raman spectroscopy, electron spin resonance (ESR
or EPR), controlled potential electrolysis, coulometry, chronopotentiometry,
voltammetry and chemical reduction. There has been little consistency as to
solvent, supporting electrolyte, working electrode surface or reference
electrode, resulting in a patchwork of data. Published reports have been
summarized in Table 1.

Whether the electron is transferred chemically or electrochemically, the
first product is S02-. Controversy begins over subsequent chemical
processes, proposed to be either

SO2  + x S02 (SO2)xSO2 (1)

or

2So2- S2o4
2- (2)

Voltaumetric and spectroscopic data have been interpreted to support one or the
other pathway. Only recently have the many contributing factors been
investigated. A review of the various studies should prove useful in the
planning of future work. These have been grouped into cyclic voltanmetric
studies, Table 2, and other voltammetric studies, Table 3.

The experimental work performed in this laboratory will be presented in
Part II of this report.

7/8
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Chapter 2

DIMETHYLFORMAMIDE (DMF)

I. CHEMICAL REDUCTION

Rinker and Lynn reduced SO2 in several solvents, using sodium amalgam as
the reductant, producing several species. 1 A blue radical ion obtained in DMF
was identified as SO2SO2-(x=1), as well as a white precipitate which was
primarily sodium dithionite, Na2 S204.

II. ELECTROCHEMICAL INVESTIGATION

A. TETRAALKYLAMMONIUM SALTS.

1. Platinum Electrode. Dinse and Mobius electrolytically generated
SO2- in DMF-TPAP (tetrapropylamnonium perchlorate) solution, studying the
resulting species by EPR and UV spectroscopy. 2 From analysis of the changes
in the EPR spectra with temperature, it was determined that for the complex,
(SO2)xSO2-, x-2 and the formation constant is l.3x10

4 M-2 at

0°C. A blue-green color was observed at higher SO2 concentrations.

Martin and Sawyer found not only a blue species in DMF-TEAP
* -(tetraethylammonium perchlorate), but a red species as well.3  %hen NaC104

was added to a completely electrolysed solution of SO2, sodium dithionite
precipitated. Cyclic voltammetry resulted in four peaks, two cathodic and two
anodic. IN spectroscopy revealed two peaks, at 485nm and 580unm. One electron
reduction of SO2 occurred at -0.85V (vs. SCE), with the corresponding
oxidation of S02- at -0.74V. The UV absorption at 580nm was identified
with the blue complex, (SO2)xSO2-, which was oxidized at -O.24V. The
red complex, SO2S2042-, absorbed at 485nm and was reduced at -1.65V.
The absorption at 350nm of a completely electrolysed solution of S02 was
attributed to the presence of dithionite ion, $2042. The equilibrium
constants were calculated to be 24 Wl for eqn. 2 and 10 for eqn. 3.

1lRinker, R. G. and Lynn, S., "Formation of Sodium Dithionite from Sodium
Amalgam and Sulfur Dioxide in Nonaqueous Media," Industrial and Engineering
Chemistry: Product Research and Development, Vol. 8, 1969, pp. 338347.

2Dinse, K. P. and Mobius, K., "EPR - Untersuchungen an elektrolytisch
erzeugtem SO2-," Zeitschrift fur Naturforach A, Vol. 23, 1968,
pp. 695-702.

3 Martin, R. P. and Sawyer, D. T., "Electrochemical Reduction of Sulfur Dioxide
in Dimuthylformamide," Inorganic Chemistry, Vol. 11, 1972, pp. 2644-2647.

)9
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S2 + S204
2- S02S2042- (3)

Magno, Hazzochin and Bontempelli found that SO2 was reduced at -0.95V
(vs. aq. SCE) in DMF-TBAP(tetrabutylammonium perchlorate),4 resulting in
anodic peaks at -0.65V and +O.IV. The first peak was attributed to the
oxidation of S02- resulting from the dissociation of dithionite and the
second peak to the direct oxidation of dithionite itself. The blue solution
absorbed at 580nm and analysis of the spectra indicated that the complex,
(SO2)xS02-, was formed. No correlation was observed between the peak
at 580nm and any voltammetric peaks. Coulometry showed that S02 and the blue
complex were both reduced at the SO2 reduction potential. The absorption
spectra were interpreted to suggest that x>l, probably equal to 2. SO2
absorbed at 275nm and a saturated solution of Na2S204 at 297nm.
Completely reduced solutions of SO2 also absorbed at 297nm. The positive
shift of the anodic peak potentials and the increase in the second anodic peak
at lower temperatures were assumed to result from weak adsorption of dithionite
onto the platinum surface.

Kastening and Gostisa-Mihelcic investigated complex formation in
DMF-TEABr(tetraethylammonium bromide) by ESR in order to determine the correct
value of x.5 SO2 was partially electrolysed and the ratio of the two
radical species determined, leading to the conclusion that xl and the
equilibrium constant for complex formation (eqn. 1) is 230 -1. The spectral
data reported by Dinse and Mobius were recalculated for xl (rather than 2)2
and K was found to be 65-200 M-1 , depending on S02 concentration.

Bowden and Dey found two anodic peaks in the cyclic voltamograme of SO2
in DMF-TBAPF6 (tetrabutyliumonium hexafluorophosphate)

6 at -0.13V and +0.63V
(vs. AgCl coated Ag wire), which were assigned to the oxidation of S02- and
62042-.

Fouchard observed that the electrolysis of S02 in DNF-TEAP gradually
turned the solution from bright blue to red to colorless. 7 Raman spectra of a

4%asno, F., Maszochin, C. A. and Bontempelli, G., 'Voltammetric Behavior of
Sulphur Dioxide at a Platinum Electrode in Dimethylformamide,"
Blectroanalytical Chemistry and Interfacial Electrochemistry, Vol, 57, 1974,
pp. 89-96.

5Kastening, B. and Gostisa-Mihelcic, B., "An USR Investigation of the Complex
Formation Between 802 and Electrogenerated S02-," Journal of
Electroanalytical Chemistry, Vol. 100, 1979, pp. 801-808.

2S.e footnote 2 on page 9.

6 owden, W. L. and Dey, A. N., "Primary Li/SOC12 Cells XI. SOC12 Reduction
Mechanism in a Supporting Electrolyte," Journal of the Electrochemical
°i ciety, Vol. 127, 1980, pp. 1419-1426.

7Fouchard, D. T., Gardner, C. L., Adams, W. A. and Laman, F. C., "Roman and ISR

Spectroscopic Studies of the Ulectroreduction of Sulphur Dioxide," in
Proceedints of the Symposium on Lithium Batteries, Electrochemical Society
Meeting, Hollywood (FL), October, 1980, pp. 156-158.

10
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completely electrolysed solution were characteristic of the dithionite ion. ESR
spectra were used to estimate the equilibrium constant for eqn. 1 as 600 M1.
In addition to the anions already identified, S02- and S02SO2-, a
third was proposed:

2 SO2  -.* SO + S032- (4)

2. Mercury Electrode. Gardner et al initiated a study of the effects
of solvent and electrolyte on the distribution of products8 among S02-,
SO2 SO2-, and S2042 - . Most of the reported results were obtained
in DMF. Two anodic cyclic voltametry peaks, two ESR peaks and two pulse
polarographic oxidations were observed in DMF-TEAP, which were attributed to
S02 - (-1.17V vs. Ag/AgNO 3 ) and SO2 SO2- (-0.65V). The equilibrium
constant for formation of the complex, S02 SO2-, was calculated to be
4360 M-1 .

B. ALKALI SALTS.

I. Mercury Electrode. The reduction of SO2 in DMF-LiCl0 4 was
shown by Gardner et al to be almost completely irreversible 8 with an entirely
different product, as evidenced by the potential of the single anodic oxidation
peak in cyclic voltammetry (-0.61V). Several alkali perchlorates were studied,
with the lithium salt producing dithionite and the potassium salt producing the
complex, SO2 SO2-.

8 Gardner, C. L., Fouchard, D. T., Leman, F. C. and Fawcett, W. R., "The
Kinetics and Mechanism of the Reduction of Sulphur Dioxide in Nonaqueous
Media," in Proceedings of the Symposium on Lithium Batteries, Electrochemical
Society Meeting, Los Angeles, October, 1979, pp. 545-559.

N 
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Chapter 3

DIMETHYLSULFOXIDE (DMSO)

I* CHEMICAL REDUCTION

Rinker and Lynn's solution of Na(Hg) and S02 in DMSO changed color from
blue to purple to black to violet to red, finally resulting in a white
precipitate.1  The formation of the blue radical ion (S02SO2") occurred
much faster than in DMF. The nature of the red radical ion (RRI) was not clear
until experiments had been run in formamide (see Chapter 6). The white
precipitate, shown to be chiefly sodium dithionite, also formed much faster than
in DMF.

II. ELECTROCHEMICAL INVESTIGATION

A. TETRAETHYLAMKONIUM SALTS.

1. Platinum Electrode. Bonnaterre and Cauquis observed that the
reduction potential of S02 in DHSO-TEAP varied with the concentration of
SO2, with a sharp change in the behavior occurring at about 10-2M.9 A
dimerization, as written in equation 2, resulting in a coating of dithionite on
the electrode surface, was used to explain anomalous results. The ratio of the

*anodic to cathodic peaks from cyclic voltammetry decreased as the SO2
concentration increased, as well as when the scan rate was increased. This
decrease followed the predictions of Olmstead, Hamilton and Nicholson for a
dimerization following electron transfer.10 The change of reduction potential
with the concentration of SO2 agreed with Laviron's observation that this was
characteristic of diffusion controlled electron transfer followed by
dimerization.1 1  The weak EPR signal attributed to SO2- indicated that
the equilibrium was largely shifted toward the dimer.

lSee footnote 1 on page 9.

9 onnaterre, R. and Cauquis, G., "Dimerization Consecutive a un Transfert
Monoelectronique II. Reduction Electrochinique du Bioxyde de Soufre dane Is
Dimethyl Sulfoxyde," E lectroanalytical Chemistry and Interfacial

Electrochemistry, Vol. 32, 1971, pp. 215-223.

10Olmatead, M. L., Hamilton, R. G. and Nicholson, t. S., "Theory of Cyclic
Voltametry for a Dimerization Reaction Initiated Electrochemically,"
Analytical Chemistry, Vol. 41, 1969, pp. 260-267.

IlLaviron, E., "Mechanism of the Polarographic Reduction of Aromatic Carbonyl
Derivatives: Influence of Dimerization of the Free Radical Formed in the
First Reduction Stage," Collection of Czechoslovak Chemical Communications,
Vol. 30, 1965, pp. 4219-4236.

l1
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2. Mercury Electrode. Dehn et al obtained a polarographic wave for
S02 in DMSO-TEAP at -0.77V (vs. aq. SCE), 12 observing that the potential of
the wave depended on the amount of water in the solution. The extensive
solubility of SO2 in DMSO was explained by the formation of the complex

(CH3)2SO + SO2  1' (CH3)2SOS02  (5)

which could be reduced in the following manner:

2[(CH 3)2SOS0 2] + 2e- . 2(CH 3)2S0 + S2042- (6)

B. LITHIUM SALTS.

1. Mercury Electrode. Differential pulse polarography was
investigated by Garber and Wilson as a means of analysis of SO2 in air.13
Garber's samples were bubbled through DMSO-LiCI, deaerated and analyzed. The
sensitivity was sufficient, with the resultant peak heights proportional to
S02 concentration, up to at least millimolar concentrations. Interferences
were found from nitrogen oxide and with water concentrations greater than 5%.

Bruno et al sought to evaluate Garber and Wilson's method, finding that
nitrogen oxides did not interfere and could be analyzed simultaneously.14 The
half-wave potential was -0.875V (vs. calomel in DMSO-O.1M LiC1).

Bruno, Caselli and Traini also studied the cyclic voltammetric behavior of
SO2 in DMSO-LiNO3.

15 The three anodic peaks were assigned to the
oxidation of S02- resulting from the monomerization of S2042-
(-0.67V vs. calomel in DMSO-O.lM LiCl), the direct oxidation of dithionite
(-0.54V) and the oxidation of the complex, S02S204

2-(-0.22V). After
complete electrolysis, a fourth anodic wave appeared which could have been due
to the oxidation of S022 obtained from the disproportionation reaction:

S204
2-* - S02 + S02

2- (7)

A solution of SO2 was electrolysed on a Hg pool at -l.OV (vs. SCE), with the
amount of unreduced SO2 monitored by voltammetry. When the electrolysis was
stopped at less than 300s, the original S02 wave could be regenerated by

12Dehn, H., Gutmann, V., Kirch, H. and Schober, G., "Gaspolarographie,"
Honatshefte Chemie, Vol. 93, 1962, pp. 1348-1352.

13Garber, R. W. and Wilson, C. E., "Determination of Atmospheric Sulfur Dioxide
by Differential Pulse Polarography," Analytical Chemistry, Vol. 44, 1972,
pp. 1357-1360.

14Bruno, P., Caselli, M., DellaMonica, M. and DiFano, A., "Simultaneous
Determination of SO2, NO and NO2 in Air by Differential Pulse
Polarography," Talanta, Vol. 26, 1979, pp. 1011-1014.

15Bruno, P., Caselli, M. and Traini, A., "Study of Sulfur Dioxide Reduction
Mechanism in Dimethyl Sulfoxide," Journal of Electroanalytical Chemistry,
Vol. 113, 1980, pp. 99-111.

14
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oxidation at -O.15OV, but only after times exceeding 700s. When the

electrolysis was allowed to proceed longer than 300s, it was impossible to

regain all of the original SO2 by reoxidation. The effect of changing the

anion of the supporting electrolyte was also noted, with E11 2 
for S02 found

to be -0.711V in O.IM LiNO3 , -0.736V in LiCl and -0.710V in LiC104.

F

15/16
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Chapter 4

ACETONITRILE (AN)

I. ELECTROCHEMICAL INVFSTIGATION

A. TETRMALKYhAMONIUM SALTS.

1. Platinum Electrode. Bowden and Dey found no evidence for the
reoxidation of SO2- in AN-TBAPF6

6 and assigned the single anodic peak
obtained by CV (-0.3V vs. AgCl coated Ag wire) to the oxidation of dithionite,
S2042-.

2. Mercury Electrode. The El/ 2 for S02 in AN-TEAP was found by
Gardner et al to be -l.080V (vs. Ag/AgNO ).8 The equilibrium constant for
equation I was calculated to be 18470 M-I, indicating much more extensive
complex formation than in DMF.

B. LITHIUM SALTS.

1. Platinum Electrode. Geronov, Moshtev and Puresheva reported one
anodic peak appearing during CV in AN-LiBr, but only at SO2 concentrations
greater than 0.1M.16  This peak (+0.17V vs.SCE) was proposed to be due to
oxidation of a product adsorbed onto the surface of the electrode as a result of
the reactions:

SO2 + e- S02-(ads) (8)

and

S02-(ads) + Li+  "-- LiSO2 (ads) (9)

rather than to oxidation of dissolved species from the bulk of the solution.
SO2 was regenerated from the oxidation occurring at +O.17V, as demonstrated by
repeated cycles in the ranges OV to -O.7V and +O.4V to -O.7V. Lithium
deposition was observed to occur at potentials more negative than -1.5V and

6See footnote 6 on page 10.

8See footnote 8 on page 11.

16Geronov, Y., Moshtev, R. V. and Puresheva, B., "Electrochemical Reduction of
Sulphur Dioxide on Inert Electrodes in Acetonitrile Solutions," Journal of

*i..i Electroanalytical Chemistry, Vol. 108, 1980, pp. 335-346.

17
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bromide oxidation at potentials more positive than +0.6V. The reduction
potential for SO2 changed linearly with the logarithm of the scan rate, as
predicted by Srinivasan and Gileadi for slow electrochemical adsorption
processes.1 7  Calculation of the associated electric charge showed that the
electrode surface was being covered by a monolayer of product.

2. Glassy Carbon Electrode. The electric charge calculated by Geronov
et al for glassy carbon was approximately twice that for platinum, presumably
due to differences in the electrode surfaces. 16 The ratio of the anodic peak
to the cathodic peak was larger for GC than for Pt, possibly due to different
bonding energies between the adsorbed coating and the substrates.

17Srinivasan, S. and Gileadi, E., "The Potential Sweep Method: A Theoretical
fAnalysis," Electrochimica Acta, Vol. 11, 1966, pp. 321-335.

16 See footnote 16 on page 17.

18
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Chapter 5

PROPYLENE CARBONATE (PC)

I. ELECTROCHEMICAL INVESTIGATION

A. LITHIUM SALTS.

1. Platinum Electrode. Tikhonova et al observed one anodic peak
during CV in PC-LiC104 (+0.525V vs. TIC1 in PC) 1 8 which was assigned to the
oxidation of anion radicals which have not yet reacted according to the scheme:

S02 + Li 4 LiSO 2 (ads) (10)

2LiSO2  4_ Li 2 S204(ads) (11)

The insoluble lithium dithionite coated the electrode surface, blocking further
reaction. On repeated cycles, the peaks were greatly diminished.

Shembel' et al found two anodic peaks during CV of a similar PC-LiCl04
solution containing about 20 times as much S02 (2.2M vs. 0.12M).

19 These
peaks were attributed to the oxidation of S02 (3.42V vs. Li) and
S2 042-(4.08V). Blockage of the electrode surface by product buildup was
noted, but with the additional observation that at low sweep rates (10wlVs),
during repeated scans, the cathodic peak increased from cycle to cycle. When
the reduction product was completely reoxidized (i.e., both anodic peaks were
traversed in the scan), the system could be operated in reverse. The anodic
peak became more positive as the switching potential became more negative and
the potential difference between the cathodic and anodic peaks increased
(indicating increased overpotential). An SO2 - solvent complex was also
postulated to explain lower than expected cathodic currents.

2. Glassy Carbon Electrode. Shembel' et al observed only one anodic
peak on glassy carbon, as opposed to two on platinum.19 The anodic peak grew,
the more negative the switching potential. Lithium was deposited at negative
potentials, as indicated by an anodic dissolution peak.

* t 8 Tikhonova, L. S., Kurchashova, N. A., Raikhel'son, L. B., Nikol'skii, V. A.
and Sokolov, L. A., "Investigation of the Electrochemical Reduction of Sulfur
Dioxide in Propylene Carbonate," Soviet Electrochemistry, Vol. 14, 1978,
pp. 1563-1566.

19Shembel', E. M., Litv6nova, V. I., Maksyuta, I. M., Moskovskii, V. Z.,
Sokolov, L. A.. and Ksenzhek, 0. S., "Cathodic Reduction of Sulfur Dioxide in
Nonaqueous Electrolytes: Lithium Perchlorate Solution in Propylene Carbonate,"
Soviet Electrochemistry, Vol. 15, 1979, pp. 1671-1677.

19/20
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Chapter 6

OTHER SOLVENTS

1. FORMWEIDE

A. CHEMICAL REDUCTION.

Rinker and Lynn observed that when sodium amalgam was added to a
solution Of SO2 in formamide, a red intermediate (RRI) quickly developed, just
as quickly becoming colorless.1 When DUIF was added to RI, blue radical ion
(ElI) appeared. Apparently both had the formula, S02S02-, with color
differences due to changes in solvation. The colorless ion (CI) appeared to be
S02S 2 

2-. A solution of CI could be changed to RRI by adding SO2.
Addition of SO2 to sodium dithionite dissolved in formamide resulted in RI.
When RRI was further reduced by Na(Rg), CI was formed. This series of
reversible reactions demonstrated thrs chemical relationships among the species.

It. UEXLANETEYLPHOSPHORAMIDE (EWPA)

A. ELECTROCHEMI CAL INVESTIGATION.

1. Tetraethylamnium Salts.

a. MERCURY ELECTRODE. The El/ 2 for SO2 in IDIPA-TEAP was
found by Gardner et al to be -1.167V (vs.- Ag/AgNO3), with the equilibrium
constant for equation 1 equal to 1456K 1. This indicated considerably less
stability of the complex in HMPA.8

111. METHYLENE CHLORIDE

A. ELECTROCHEMICAL INVESTIGATION.

1. Tetraalkylamonium Salts.

a. PLATINUM ELECTRODE. Bowden and Dey found in MeC12-TBAPF 6
that CV Of SO2 resulted in two anodic peaks, assigned to the reduction
products, S02 -(-0.4V vs. ASCl coated Ag wire) and S20(4O6V.

1See footnote 1 on page 9.

8See footnote 8 on page 11.

6Seea footnote 6 on page 10.

21/22



NSWC TR 80-533

Chapter 7

DISCUSSION

The reduction of SO2 in nonaqueous solvents results in two major
products: (S02)xSO2 and S2042. Some disagreement exists, as
shown in Tables 4 and 5, but the predominant species depends on numerous
factors, including the nature of the solvent, the supporting electrolyte, 802
concentration, temperature, electrode surface and the presence of impurities
such as water.

1. SOLVENT. All of the solvents studied were polar and aprotic.
Differences in the observed mechanism for S02 reduction seem to be directly
related to individual capacities for solvation. Baranski and Fawcett found that
when the solvent was changed, keeping a fixed supporting electrolyte, the log of
the standard rate constant for the reduction of Na+ ions at a Hg electrode
varied linearly with free energies of salvation.20 Gardner et al demonstrated
that the products of reduction depend on the degree of ionic association between
the free radical and supporting electrolyte cations.8 Polar solvents of high
dielectric constant discourage ion pairing, because of stronger solute-solvent
interactions.2 1 The solvents in these studies are all highly polar, but the
dielectric constants vary considerably, as shown by Covington's2 1 values in
Table 6.

In poor solvators, the free radical ion is more available for complexation
by unreduced S02 to form the species, (S02)xSO2-, demonstrated by
Gardner et al with their values for the complex formation constant of 1456M1
in HMPA, an excellent solvator, 4363N-1 in DMF and 18470M- 1 in AN8,
presented with other reported values in Table 7. Also observed by Gardner et al
was a shift in half wave potential, from -1.257 in DHF to -1.167 in UNPA to
-1.080 in AN. This transition does not follow the trend of complex formation
attributed to solvation.

2 0Baranski, A. and Fawcett, W. R., '"edium Effects in the Electroreduction of
Alkali Metal Cations," Journal of Electroanalytical Chemistry, Vol. 94, 1978,
pp. 237-240.

r 8fee footnote 8 on page 11.

2 1Covington, A. K. and Dickinson, T., Ed., Physical Chemistry of Orzanic
Solvent Systems (London: Plenum Press, 1973), pp. 332-393.

23
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Color differences have been observed in solutions of reduced SO2 . Some
of this effect can be attributed to differences in solvation mechanisms. Rinker
and Lynn found that amides with one or more protons on the amide nitrogen gave a
red intermediate, where others gave a blue species. 1 Dry DMF is aprotic and
nonbasic, but other such solvents, e.g. dioxane, cannot stabilize BRI. The
unexpected stability of BRI in D1F was explained by the absence of H+ and
OH-, the solvent "cage" effects resulting from complexes between solvent and
radical, and resonance structures.

An equilibrium constant was calculated for the dimerization of S02- in
DMS015 to be 105, as opposed to 24 in DMF8 .

It would seem that generally AN favors complex formation, whereas DNSO
favors dimerization.

2. SUPPORTING ELECTROLYTE. Studies by Gardner et al showed that the
formation constant for the complex varied when the supporting electrolyte was
changed.8 In DMF, decreasing the cation size from K+ to Na+ to Li+

resulted in increasing dimer formation. It was concluded that the much larger
tetraalkylammonium salts favor complexation, while lithium salts favor
dimerization.

Interesting comparisons can be made, however, when examining Table 4. Both
Martin3 and Gardner et al8 reported two anodic peaks in DHF-O.lM TEAP
separated by 0.5V, assigned to the oxidation of S02- and SO2SO2-.Magno et a l and Bowden and Dey 6 found two anodic peaks in DMF-TBA+

separated by 0.75V which were attributed to the oxidation of S02- and
82042-. Magno et al observed the complex spectrophotometrically, but
reasoned that it was too unstable to be detected voltammetrically. It would
seem that different species are responsible for the peaks observed with TEA+

and TBA+, as evidenced by the different voltage separations.

Bruno et al found a shift in the SO2 reduction potential when the anion
was changed in a series of Li+ salts.15 If complexation of SO2 by the
anion had been responsible, a cathodic shift would have occurred on increasing
the electrolyte concentration. It was proposed that changing the anion modified
the rate of dimerization. The observed half-wave potential was plotted

18ee footnote 1 on page 9.

15 See footnote 15 on page 14.

8See footnote 8 on page 11.

r3See footnote 3 on page 9.

4 See footnote 4 on page 10.I 680e footnote 6 on page 10.
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vs. 1o, the potential at the outer Helmholtz plane, for different
concentrations of LiClO4 and LiNO3 , resulting in reasonably linear
correlations.

3. CONCENTRATION OF SO. Geronov et al reported that anodic peaks
did not appear in cyclic voltammograms until the 802 concentration was at
least 0.1M ,6 but many other studies observed peaks at concentrations in the
range of 10-4 to IO-2M.

Gardner et al found a trend toward more anodic potentials for the half-wave
potential of S02 in DMF-TKAP8 , as shown in Table 8. On the other hand,
Bruno et al 15 and Martin and Sawyer3 reported that the peak potential
shifted cathodic as (SO2] increased. In a detailed study, Bonnaterre and
Cauquis observed that the peak potential became more anodic as the concentration
of SO2 increased9 , until the effect reversed at a concentration between
10-3 and 10-2M (depending on the sweep rate) and the potential moved toward
more cathodic potentials with continued increase in S02.

As the amount of S02 increased, the ratio of the more negative anodic
peak to the more positive anodic peak decreased, as observed by Magno et a1

4

and Martin and Sawyer3 in DMF and Bonnaterre and Cauquis in DMS0 9 . This
fact could be taken as evidence for the assignment of the second anodic peak to
the oxidation of the complex, (S02)xSO2-.

4. TEMPERATURE. Magno et al found a strong dependence of the
potentials of the anodic peaks on temperature.4 At 0°C the peaks were at
-0.5 and +0.2V (vs. SCE), but at 450 C they shifted cathodically to -0.8 and
-0.25V. The cathodic peak potential was practically unchanged. The ratio of
the anodic peaks decreased as the temperature decreased.

* Gardner et al reported that the shift observed in the reduction potential
of SO2 depended on the nature of the electrolyte

8 , as shown in Table 9. In
DMF-TEAP, the potential became more positive at lowered temperature.

According to Bonnaterre and Cauquis, increased temperature (550 C) reduced
the effect of the diner costing on further reactions at the electrode
surface9 , making the results more reproducible and less affected by other
parameters.

5. ELECTRODE SURFACE. Martin and Sawyer reported that cyclic
voltammograms of S02 in DMF-TAP obtained on Pt and Au electrodes are similar,

168ee footnote 16 on page 17.

8See footnote 8 on page 11.

15See footnote 15 on page 14.

3See footnote 3 on page 9.

9S* footnote 9 on page 13.

4See footnote 4 on page 10.
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but the ratio of the anodic peak to the cathodic peak is larger at Pt
3. It

was also pointed out that the Au electrode is less susceptible to hysteresis.
Gardner et al ran cyclic voltametry in the same DMF-TEAP solution at the Hg
electrode (HlNDE) and observed analogous results 8, as can be seen in Table 4.
Geronov et al studied the anodic electric charge for Pt and GC electrodes,
finding it to be much lower for Pt, presumably due to the relative smoothness of
the surface. 16 The GC surface was more rapidly passivated, as demonstrated by
repeated scans. Only one anodic peak was observed on GC by Shembel' et al,
compared to two on Pt. 19

6. EFFECT OF WATER. Tikhonova et al added water to the PC-LiCl04
electrolyte, increasing the reduction peak and producing a second reduction peak
at more negative potentials.18 Geronov et al concluded that the effect of
water was not evident immediately, but appeared gradually over a period of hours
as the cathodic peak increased. 1

Dehn et al had found that small amounts of water increased the half-wave
potential of SO2 in DMSO, whereas the presence of greater than 5 vol Z split
the wave into two adjacent waves.

12

3See footnote 3 on page 9.

8See footnote 8 on page 11.

-' 
16 See footnote 16 on page 17.

19 See footnote 19 on page 19.

18 See footnote 18 on page 19.

* 16See footnote 16 on page 17.

12 See footnote 12 on page 14..
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Chapter 8

SUMMARY AND PLANS

As the previous discussion shoved, there has been no general agreement on
the mechanism of the reduction of S02 in nonaqueous solvents. The choice of
solvent affects the outcome of the reduction, with DMF and AN favoring the
complex and DMSO the dimer. Electrolytes with large cations favor the complex,
but Li+ ions produce the dimer. This generalization is questionable in view
of the discrepancies reported between studies in TEA* and TBAt solutions
(see Chapter 7, section 2). Electrode surface is also important because of the
possibilities of catal)r' effects and/or side reactions.

Cyclic Voltm , -,erates information about reaction reversibility,
intermediate sp.v *r,; reduction mechanisms. The effect of changes in
electrolyte and , surface is observed in the position and shape of
voltammetric peak_,

Coulomet:.t detesiaiines the number of electrons involved in the electron
transfer, possible revealing mechanistic information in the shape of the
current-time cur',e.

Controlled potential electrolysis produces reactive intermediates which can
* . be detected by other voltammetric techniques or by UV-vis spectroscopy, which

monitors the appearance and disappearance of charge-transfer type complexes during
the course of the reduction. Those species which have an unpaired electron are
also detectable with ESR spectroscopy.

Rotating ring-disc electrodes provide information about the half-life of
soluble intermediates, possibly detecting adsorption at the electrode surface.

More detailed experimental plans will be presented in Part II of this
report, along with preliminary results from cyclic voltanmetry and other studies.
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TABLE 1 PUBLISHED STUDIES OF S02 REDUCTION*

PUBLICATION WORKING

AUTHOR DATE SOLVENT ELECTROLYTE ELECTRODE

DEHN 1962 DMSO TEAP Hg

DINSE 1968 DMF TPAP, TBAI Pt

RINKER** 1968 DMF, DMSO, F

BONNATERRE 1971 DMSO TEAP Pt

GARBER 1972 DMSO LiC1 Hg

MARTIN 1972 DMF TEAP Pt

MARTIN 1973 DMF TRAP Pt

MAGNO 1974 DMF TBAP Pt

TIKHONOVA 1978 PC LiC10 4  Pt

BRUNO 1979 DMSO LiCI Hg

KASTENING 1979 DMF TEABr Pt

SHEMBEL' 1979 PC LiC104 Pt, GC

GARDNER 1979 DMF, AN, HMPA TRAP, LiC104  Hg

GERONOV 1980 AN LiBr Pt, GC

BOWDEN 1980 DMF, AN, MeC12 TBAPF6  Pt

BRUNO 1980 DMSO LiC1, LiNO3 , LiCI0 4  HS

FOUCHARD 1980 DMF TEAP Pt

* ABBREVIATIONS EXPLAINED IN TEXT

• CHEMICAL REDUCTION WITH Na(Hg)

29
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TABLE 4 ASSIGNMENT OF ANODIC PEAKS IN CYCLIC VOLTAMMETRY IN
TETRAALKYLAMMONIUM SALT SOLUTIONS

ANODIC
AUTHOR SOLVENT ELECTROLYTE PEAK POTENTIAL SPECIES ELECTRODE

MARTIN DMF TEAP -0.74 SO2-  Pt
-0.24 S02 S02 -  Pt

MAGNO DMF TBAP -0.65 so 2 - Pt
+0.1 S2042 P

BOWDEN DMF TBAPF 6  -0.13 SO2  Pt
+0.63 S2 04

2 - Pt
* GARDNER DMF TEAP -1.17 SO2 -  Hg

-0.65 S02S02- g

BONNATERRE DMSO TEAP S2042 P

BOWDEN AN TBAPF6  -0.3 S2042- Pt

* BOWDEN MeC1 2  TBAPF 6  -0.4 S02 -  Pt
+0.06 S2 04

2 - Pt

3
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TABLE 5 ASSIGNMENT OF ANODIC PEAKS IN CYCLIC VOLTAMETRY IN
ALKALI SALT SOLUTIONS

ANODIC
AUTHOR SOLVENT ELECTROLYTE PEAK POTENTIAL SPECIES ELECTRODE

GARDNER DMF LiC1O4  -0.62 S2 04
2 - Hg

GARDNER DMF KC10 4  ?S0 2 S0 2 - Hg

BRUNO DMSO LiNO3  -0.67 S0 2 - Hg

-0.54 S204
2 - Hg

-0.22 S02S2 042- Hg

GERONOV AN Li~r +0.17 LiS02  Pt

GERONOV AN LiBr ?LiS0 2  GC

TIKHONOVA PC LiCl04  +0.525 S02-P

SHEMBEL' PC LiC1O4  +3.42 S02- Pt

+4.08 S2 04
2 - Pt
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TABLE 6 DIELECTRIC CONSTANTS E)AND DIPOLE

MOM4ENTS ()OF NONAQUEOUS SOLVENTS

SOLVENT If a

F 109.5 3.73

PC 64.4 4.98

DMSO 46.7 3.96

DMF 36.7 3.86

AN 36.0 3.92

UNPA 29.6 5.39
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TABLE 7 EQUILIBRIUM CONSTANT FOR COMPLEX FORMATION

SOLVENT ELECTROLYTE AUTHOR K

DMF TPAP DINSE 1.3x104 M72

DMF TEABr KASTENING 230 M71

DMF TPAP DINSE RECALCULATED 65-200 M-1
BY KASTENING

DMF TEAP FOUCHARD 600 M- I

DMF TEAP GARDNER 4360 M-1

AN TEAP GARDNER 18470 M'-1

HMPA TEAP GARDNER 1456 WI

3
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TABLE 8 VARIATION OF El/2 WITH [SO2 ] IN DIIF-TEAP

IS021E 11 2

5X10-4  -1.279

10-3 -1.257
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TAKEI 9 VARIATION OF El2WITHi TEMPERATURE

A. DMF-TEAP

-10 -1.224

O -1.234

20 -1.254

B. DMF-LiC 104

OC E/

-10 -1.260

O -1.250

20 -1.235
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